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ABSTRACT

For thesame expertknowledge,ifwe use different&- and v-operationsinafuzzycontrol

methodology,we end up withdifferentcontrolstrategies.Each choiceoftheseoperations

restrictsthe setofpossiblecontrolstrategies.Sincea wrong choicecan leadtoalow quality

control,itisreasonableto tryto looseas few possibilitiesaspossible.We formalizethis

ideaand show thatitleadstothe choiceofmin(a + b,I)forV and rain(a,b)for&. This

choicewas triedon NASA Shuttlesimulator;itleadsto amaximally stablecontrol.

J
0

I.-
Z

Q

N

0
I--

0

u'I oO

0

,0

INTRODUCTION, MOTIVATIONS, AND MAIN RESULTS

In mfany situations (e.g., in space exploration), it is necessary to translate operator's knowledge )(formulated
in natural-language terms) into actual control. According to a fuzzy control methodology [1, 10, 11], we
must, first, determine membership functions that correspond to all natural- language terms (like "small" or

"big") that appear in the rules. Second, we must choose operations that correspond to & and V. As a result
we get a membership function re(u) for a control; then we need a method to transform this function lrc(u)

into a single control value (a defuzzification method).

Different choices of &- and V- operations lead to control strategies of drastically different quality, so the

problem of choosing them is very important [8,9]. In the present paper, we propose two solutions:

1) When we make a choice, we thus restrict the set of possible control strategies. Since a wrong choice can
lead to a low quality control, it sounds reasonable to try to loose as few possibilities as possible. In other
words, it sounds reasonable to choose &- and V-operations in such a way that uncertainty corresponding

to a'c(u) is the biggest possible. This methodology is well known in the case when the uncertainty is
probabilistic; it is called a mazimum entropy approach, and it is widely applied to various problems ranging

from processing physical data to processing uncertainties in expert systems [2,4,6,7].

Justlikeina probabilisticcase,we want toevaluatetheuncertaintyofa membership functionas theaverage

number ofbinaryquestionsthatone needstoask inordertodeterminethe value.We provethatthe desired

maximal uncertaintyisattainedwhen we usemin(a + b,I)forV, and min(a,b)for&. In controlterms,this

maximum entropyapproach isprovedtoleadtomaximallystablecontrols.Thisresultisingood accordance

with common sense:we minimizedthe lostopportunities,and therefore,we ended up with thebestpossible

control.Itisalsoin good accordancewith the experimentson the NASA Johnson Space Center Shuttle

silumator,thatshowed thatthischoiceof&- and V-operationsleadto a maximally stablecontrol[8,9].

2) The above arguments are reasonable only if we are ready to apply various defuzzification techniques to
extract the best control from try(u). However, in industrial applications, a defuzzification rule is usually
fixed. Since this rule is not necessarily the most appropriate (see., e.g., [9,14]), it is reasonable to try to

depend on it to a smallest extent. In other words, in these cases, it is reasonable to choose & and v-
operations from the condition that the uncertainty related to _rc(u ) is the smallest possible.

We prove that this leads to the choice of max(a, b) for V and ab for &. In control terms, this minimum

entropy approach leads to maximally smooth controls. This result is also in good corresponds with common
sense: since we were extremely cautious, we ended up with a very smooth control. This result is also in good



accordance with the experiments on the NASA Space Shuttle simulator, that show that this kind of control
is the smoothest, and hence, it is the best control for problems like docking where smoothness is the main

requirement.

Detailed description and proofs can be found in [3].

HOW TO MEASURE UNCERTAINTY THAT
FUNCTION

CORRESPONDS TO A MEMBERSHIP

In order to answer this question, let us recall where the values _r(z) of a membership function come from. If

lr(z) corresponds to, say, "small", then r(z) is our degree of belief that z is small. One of the most natural
ways to express this "degree of belief" by a number is to ask several experts, whether they consider z small
or not, and after M out of N answer "yes', take M/N as a'(z) (see, e.g., [5]). This approach allows us to

interpret the value 7r(z) as a frequency (or, if you like, $abjective probability) that z is small.

Suppose that we have a notion (like "small") that is described by a function r(z). If the only thing we know
about some real value z is that it satisfies this property (e.g., "is small"), then how many binary questions
do we have to ask to determine z?

1. If we have finitely many (say N) alternatives, then it is natural to estimate the uncertainty by the smallest

number Q(N) of binary ("yes'-"no') that we have to ask in order to determine the alternative. It is well
known that this smallest number is attained when we apply binary search, and Q(N) _ log2(N ).

2.Iftheonlyknowledgewe have isthatthe unknown valuez belongstoan interval[a,b],thenforeach _ > 0,

we can definethe c-uncertaintyQ([a,b],c)ofthisknowledge as the smallestnumber of binaryquestions

thatwe have toask inorderto determinez withprecisione (i.e.,inordertofindan interval[z0- e,z0 + el

thatcontainsz). For that,we can divide[a,b]into_ (b- a)/(2e)intervals[a,a ÷ 2el,[a+ 2e,a + 4el,...,

and thus Q([a, b], e) _ log2((b - a)/(2e)) -_ u- m log_(2e), where u - log2(b- a) and m - 1.

3. If the only knowledge we have is that z belongs to a finite union S of intervals, then we get a similar

formula with u - log2(/_(S)), where #iS) is the total length (measure) of S.

4. Let us now consider the case when our knowledge about z is described by a piecewise-constant memlbership
function, i.e., there exist values zl < z2 < ... < z, such that lr(z) = 0 for z < za and z > zn, _r(z) = cons_

on each of the intervals (zi,zi+z), and for each i, r(zi) coincides either with the value of _(z) for z < zi,

or with the values of 7r(z) for z > zi. Such a function takes takes only finitely many different values
h0=0<ha <h2<...<hk.

So, h2-th part of th experts believe that x belongs to the set {z : _r(z) > ha}, (h2 -hi) of them believe that
z E {z : r(z) _> h2}, (hz - h2) of them believe that z E {z : a'(z) _> h3}, ..., and ht - h_-a of them believe

that z E {z : _'(z) > h_}. Ifz E {z : _r(z) >_hi}, then we need Q({z: _(z) >_ hx},e) questions to determine
z with the precision e. Ifz E {z : a-(x) _> h_}, then we need Q({z : r(z) >_.hz},e) questions, etc. Therefore,
according to the opinion of ha of experts, we need Q({z : a'(z) _> hi}, e) questions; according to the opinion
of (h2 - hi) of the experts, we need to ask Q({z : r(z) _> hz},_) questions, etc. So, it is natural to define

the expected number of questions as Q(a',e) ""k-a'h= 2.,i=0 _ i+a - h_)Q(_r{=:,(=)>h,+,} e). One can prove that in

x--,/_-1_hthiscase,m = sup=_(z) and u = 2..,i=0_ i+x - hi)log_(/_{z : w(z) >_ hi+l}).

5. An arbitrary continuous membership _r function can be approximated by piecewise-constant functions

_rn. So, we can define its e-uncertainty Q(_r,e) as the limit of the values Q(_ra,_). One can prove that

Q(_r, e) ".. m(_r) - air ) 1og2(2_), where m(_r) = sup_ r(z), and u(_r) = f0m(') log_(p({z : _r(z) _ h})) dh. In

particular, if for some z0 > 0, _r(z) = 0 for z < 0, _r(0) = 1, a'(z) = 0 for z _> z0, and for x _ [0, z0), _r(z) is

continuous and decreasing, then u(r) = log,(z0)- (1/ln(2))I(_r), where I(r) - fo°(1 - _r(z))/z dz coincides
with the expression that was introduced (from different assumptions) in [12,13].

How to compare uncertaintiesof differentmembership functions? We say thatuncertainty(u_,mx )

isno1 smallerthan theuncertainty(u2,m_),and denoteitby (ua,m_)>" (ua,m2) ifthereexistsan c0 such

that for all e < e0, u_ - m_ log_(2_) > u_ - ms 1og2(2_). One can prove that (ua, rna) __ (u_, m2) if and only

ifeitherm_ > m2, or mx = m_ and ua >_u_. ___----__ )



WHAT IS FUZZY CONTROL? A BRIEF MATHEMATICAL EXPLANATION

Definition 1. Assume that a set S C R n is given. Elements F = (zl, ..., z,) E S will be called states.

Comment. Informally, the values xl,...,x, describe everything that we need to know to make a control

decision. For example, if we control a heater/cooler, then n = 1, and the only variable we need to know
is the difference zl = t- to between the actual and the desired temperature. If we are controlling a

spaceship, then we need to know its coordinates zl,z2, z3, its current velocity vector (3 more variables
z4 = _l,zs = _2,z6 = _3), and 2 angles that describe the orientation. So, for a spaceship, n = 8.

Definition 2. Let us fix a finite set :P of continuous membership functions. The elements of this set will be

called fuzzy properties.

Comment. As examples, we can consider "small", "big", "medium", etc.

Definition 3. By an elementary formula E we mean an expression of the type P_(=_), where P_ is a fuzzy

property. By a rule, we mean an expression of the type El, ..., E,_ ---*P(u), where E_ are elementary formulas,
P is a fuzzy property, and u is a special variable reserved for control. Formulas E_ are called conditions,

P(u) is called a conclusion of the rule. By a knowledge base we mean a finite set of rules.

Comment. As an example of the rule, one can consider a rule N(zl) _ N(u), meaning that if the difference
t - to between the actual and the desired temperatures is negligible, then the control should be negligible.

Another possible rule is: SP(zl) ---*SN(u), meaning that if the difference t - to is small positive, then we

need to,apply a small negative control (i.e., switch on the cooler a little bit). A similar rule SN(xl) ---*SP(u)
tells th&t if it becomes a little bit cold, it is necessary to switch on the heater for a while.

Motivation of the following definitions.Ifwe have a setofrules,then we can say thata controlu is

appropriateifand onlyifone the rulesisapplicable,and u appropriateaccordingtothisrule.Let us denote

the statement"controlu isappropriate"by C(u). Then, forthe threerulesthatdescribethe cooler/heater,

we have the followinginformal"formula"thatdescribeswhen a controlu isappropriate:

C(u) -= (N(z)&N(u)) V (SP(z)&SN(u)) V (SN(z)&SP(u)).
Since N(x), N(u), ..., are fuzzy statements, we can get only fuzzy conclusions about the control, i.e., thus

defined C(u) also becomes a fuzzy statement. To get the precise values, we need to choose some operations
that would describe & and V for fuzzy values.

After we choose them, we can use the above formula to describe for each u, what is the reasonable degree of

belief that this value u is an appropriate control. In other words, we will be able to generate a membership

function _rc(u) that corresponds to control. After that, we need some defuzzification procedure that would
transform this membership function into a single recommended control value.

The meaning of the &-operation is as follows: Suppose that we have two statements A and B. Our degree

of belief in A is equal to a, and our degree of belief in B is equal to b. If we have no other information about
A and B, what must the reasonable degree of belief in A&B equal to? This reasonable degree of belief will
be denoted by f_.(a, b). In the same situation, a reasonable degree of believe in A V B will be denoted by

fv(a, b), and fv will be called an V-operation.

In describing uncertainty of a membership function, we used the interpretation of membership values 7r(z) as
frequencies. Namely, we assumed that as a truth value t(A) of an uncertain statement A, we take the ratio

t(A) = N(A)/N, where N(A) is the number of experts who believe in A, and N is the total number of experts
that were questioned. In this interpretation, the following inequalities axe true: N(A V B) < N(A) + N(B),

N(A V B) < N, N(A V B) >. N(A) and N(A v B) >_ N(B). If we divide both sides of these inequalities by N,
and combine them into one, we get the followinginequality: max(t(A), t(B)) < t(AVB) < min(t(A)+t(B), 1),

hence max(a,b) _< ?v(a, b) < min(a + b, 1). Likewise, from N(A&B) < N(A) and N(A&B) <. N(B) we
conclude that t(A&B) < min(t(A),t(B)) and fA,(a,b) < min(a,b).

IfbeliefinA and beliefinB were independentevents,thenwe would have t(A&B) = t(A)t(B).In reallife,

beliefsare not independent:ifan experthas strongbeliefsinseveralstatementsthatlaterturnout tobe

true,then thismeans thathe isreallya good expert,and t_onable toexpectthathisdegree

2:?)
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of belief in other statements that are true is bigger. If A and B are complicated statements, then many of
those experts who believe in A are really good experts, and therefore they believe in B as well (and hence in

A&B). Therefore, the total number N(A&B) of experts who believe in A&B must be bigger than the same
number in the case when beliefs in A and B were uncorrelated random events. So t(A&B) > t(A)t(B), and

fir(a, b) >_ab. In statistical terms we can express this inequality by saying that A and B are non.negatively
correlated. So, we arrive at the following definitions:

Definition 4[9]. By an and-or pair we will understand a pair of continuous functions fk, fv : [0, 1] x [0, 1] --,
[0, 1], that are non-decreasing in both variables, and satisfy the following conditions:

max(a, b) < f_,(a, b) < min(a + b, 1); iv(a, b) _< rain(a, b); f_(O,a)= 0, f_,(1, a) = a, iv(0, a)= a, fv(1, a) =
1; fv(a,b) = fv(b,a),f_(a,b) = f_,(b,a). An and-or pair is called correlated if f_(a,b) >_ ab for all a and b.

Denotation. For three numbers a,b,c, we define fx,(a,b,c) - f_(f_,(a,b),c). For more than three

numbers a, b, ..., c, we define f_,(a, b, ..., c) = f_,(...(f_,(f_(a, b), ...)c). Likewise, we define fv(a, b, ..., c) =

(...(fv(/v (a,b),...)c).

Definition 5. Suppose that we are given a knowledge base K = {R1, R2, ...), an and-or pair (f_,, fv), and

a state _ 6 S. By a membership function, that corresponds to a rule Pl(zil), ..., Pm(zi,,) -- P(u), we mean
a function 7r/_ = f&(Pl(ziz), ...,Pm(zi,,P(u)). By a control membership function, that corresponds to the
knowledge base and a state E, we mean a function 7re(u) = fv(Ira,, 7ra21...), where R_. are rules from K.

OPERATIONS FOR WHICH UNCERTAINTY IS THE BIGGEST

Theorem 1. Suppose that K is a knowledge base, and _ is a state. Let us denote by rfc(u) the con-

trol membership function, that corresponds to an arbitrary and-or pair (f&(a,b),fv(a,b)), and by Yrc(u)
the control membership function that corresponds to the and-or pair (min(a,b),min(a + b, 1)). Then,

(u(Yrc), m(Yfc)) _ (u(Trc), m(_rc)).

So, the biggest uncertainty is attained when we use min(a, b) for &, and min(a + b, 1) for V. It has been

proved in [9] that these very and-or operations lead to maximally stable controls. This result is in good
accordance with common sense: we minimized the lost opportunities, and therefore, we ended up with the

best possible control.

OPERATIONS FOR WHICH UNCERTAINTY IS THE SMALLEST

Theorem 2. Suppose that K is a knowledge base, and f is a state. Let us denote by 7fc(u) the control

membership function, that corresponds to an arbitrary correlated and-or pair (f_.(a, b), fv(a, b)), and by _rc(u)
the control membership function that corresponds to the and-or pair (ab, max(a, b). Then, (u( _rc ), rn( Trc ) ) >"

Cu( c), roche)).

So, the smallest uncertainty is attained when we use ab for &, and max(a, b) for V. It has been proved in [9]
that these very and-or operations lead to maximally smooth controls. This result is also in good corresponds

with common sense: since we were extremely cautious, we ended up with a very smooth control.

PROOFS

Lemma. ff 7rl(Z ) and r3(z) are membership functions, and a'l(z ) > _r_(z) for all z, then (u(rl), m(_rl))

Proof of the Lemma. First,since_h(z) _>_r2(z)forallz,we can concludethatm(Th) = sup= W'I(Z ) __

sup_r_(Z)= re(r2).Ifm(Tq) > m(Tr2),then (U(lh),m(Th)) >-(U(Ir_),m(_r_)).So,to provethe Lemma, it

remainstoprovethatifm(Th) = m(_r2),then U(_h) >_U(_r2).Indeed,sincewe assumed thatr1(z)_>7r2(z),

if_r_(z)> h, then _h(z)_>h.So, {z :_r_(z)_>h} C {z :_r](z)> h}.Therefore,foreveryh,p({z :r_(z) _>

h}) > #({z :_r_(z)> h}).Sincewe assumed that rn(_h)= sup__h(z) = sup=_r_(z)= m(_r_),we can

integratethisinequalityfrom 0 to m(ri) = sup=ri(z),and concludethatf_n('_*)p({z:r_(z)>_h})dh >_

fo ('_)p({z :_r2(z)_>h})dh,i.e.,thatu(_h)>_u(=_).Q.E.D._______._
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Proof of Theorem 1. According to Definition 5, _rc(u) = fv(lr/_,, _rj%, ...), where R,, R2, ... are all the
rules form the knowledge base K, and for each rule R of the type Pl(zi_), .... Pra(zi,._ -'_ P(u), we define 7rR

as 7rR = fl,(Pl(zi,), ..., Pm(zi,,), P(u)). Likewise, _c(u) - fv(_R_, _R2, ..-), where fv(a, b) - min(a + b, 1),
and _rR = rain(P1 (zi_), ..., Pm(zi,,, P(u)).

1°. According to our Definition 4 (of an and-or pair), f&(a, b) < min(a, b) for all a, b. Therefore, for each

rule Rk, min(Pl(zi,), ..., Pm(zi,,), P(u))> fl,(Pl(zi,), .... P,n(zi,,), P(u)), i.e., _/t_ >_ rRk.
2°. According to Definition 4, fv if non- decreasing in each of the variables. So, from r/tk > 7rnk, we

conclude that 7rc(u) = fv(TrR,, 7rn_, ...) < fv(_rR_, _R_, ..-).
3 °. Now, according to Definition 4, fv(a,b) < fv(a,b) for all a,b. Hence, fv(_n_,_rn_,...) <
L ...) =
Combining 2° and 3°, we conclude that 7rc(u) < _rc(u). Application of the Lemma completes the proof.

Proof of Theorem 2. Here, _c(u) = fv(TrR,,lrR2,...), where and for each rule R of the type

Pl(zit),...,P_(zi,,) --* P(u), _'R - f_(Pl(zit),_...,Pm(z_,,),P(u)). Likewise, _c(u) - max(_Rt,_R2,...),
where _n = f&(P1(z,,),...,Pm(zim),P(u)) and f:(a,b)= ab.

I°. Accordingto our definitionof a correlatedand-orpair,f_(a,b)>__ab = f,..(a,b)foralla,b.Therefore,

foreveryruleRk, f.,.(P1(zi,),...,P_(zi.,),P(u)) >_.f,_(P_(zi,),...,P,.,,(zi..),P(u)),i.e.,:ra,> _a,.

2°.Accordingto Definition4,fv ifnon-decreasingineachofthevariables.So,from xa_ >__n_,we conclude

that_rc(u)= fv(xa,,_ra:,...)>_.fv(_a,,_:, .-.).
3°. Now, according to Definition 4, fv(a,b) >_ max(a,b) for all a,b. Hence, fv(_a,,_a_,...) >_

...) =
Combining 2° and 3*, we conclude that rc(u) >_ _c(u). Application of the Lemma completes the proof.
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